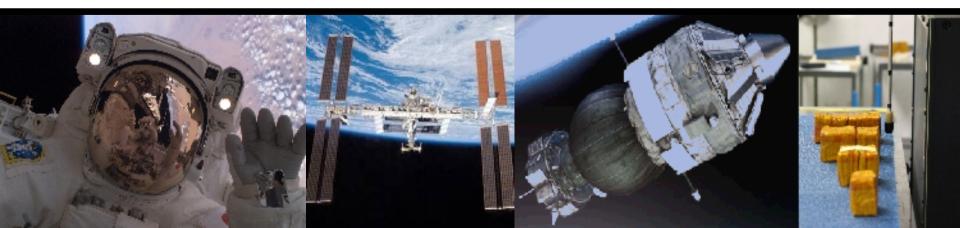


## **SPAce Dosimetry for Astronauts**

Sezione di Napoli


M. Pugliese, M. Durante, G. Gialanella, C. Treno

Sezione di Roma 2

M. Casolino, A. Morgia, P. Picozza, V. Zaconte

Workshop "La radiobiologia dell'INFN"

Trieste, 7 febbraio 2008



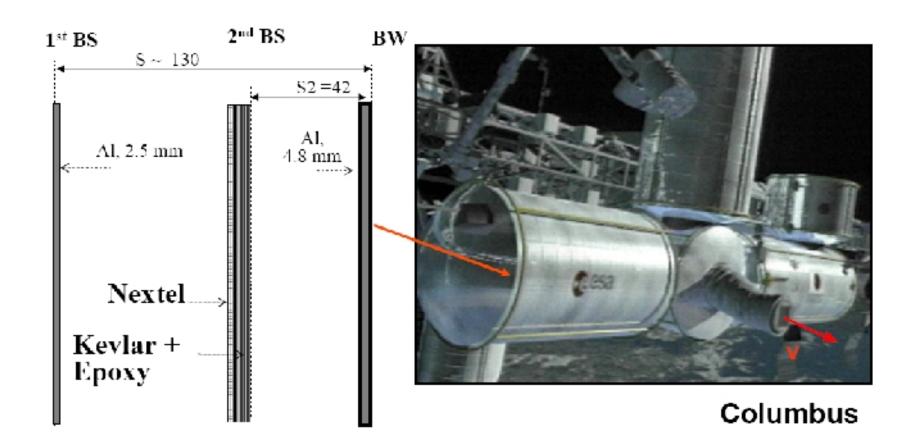


#### IL PROBLEMA DELLA RADIOPROTEZIONE NELLO SPAZIO

- ✓ Uno dei maggiori rischi per la salute degli equipaggi di missioni spaziali, soprattutto nel caso di viaggi interplanetari, è l'esposizione alla radiazione spaziale, composta principalmente da particelle cariche di alta energia.
- ✓ La schermatura è l'unica semplice contromisura per l'esposizione a radiazione
- ✓La elevata energia della radiazione cosmica e la frammentazione nucleare rendono tuttavia il problema molto complesso
- ✓ La protezione degli astronauti dalla radiazione cosmica comporta quindi inevitabili compromessi nella progettazione dei futuri veicoli spaziali.



#### SPADA SPAce Dosimetry for Astronauts


#### SCHERMATURE NELLO SPAZIO

- ✓ La schermatura sulle navicelle spaziali è normalmente in Al e recentemente è stato montato polietilene nelle zone di riposo della ISS, dati i risultati delle misure e dei calcoli effettuati anche dal nostro gruppo.
- ✓ Attualmente alcuni materiali, quali il Kevlar e il Nextel, stanno trovando ampie applicazioni nella costruzione di moduli gonfiabili per i veicoli o le stazioni spaziali, in quanto non vengono danneggiati a seguito di eventuali impatti con meteoriti o frammenti.
- ✓ Al fine di garantire un'efficace Radioprotezione degli astronauti, è necessario studiare come la radiazione cosmica interagisce con questi materiali.





#### **SPAce Dosimetry for Astronauts**





#### **SPAce Dosimetry for Astronauts**



E' necessario misurare le proprietà di Kevlar e Nextel, per capire se anche in termini di riduzione di dose Kevlar e Nextel possono considerarsi materiali elettivi da utilizzare nello spazio.



## DOSIMETRIA FISICA

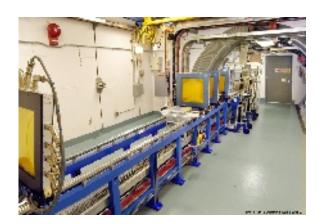
Prove sull'efficacia di questi materiali, dal punto di vista radioprotezionistico

in corso: sulla Stazione Spaziale Internazionale

ALTCRISS dosimetria passiva TLD e CR-39

dosimetria attiva Alteino

effettuate: presso acceleratori di particelle di alta energia

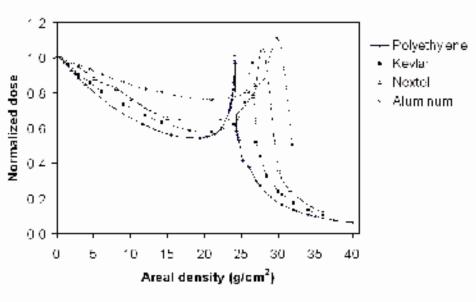

NSRL presso il Brookhaven National Laboratory

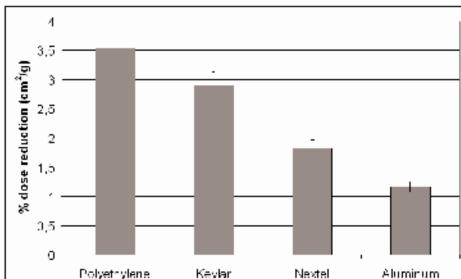


#### **DOSIMETRIA "A TERRA"** Materiali e Metodi

Poiché nello spazio il campo è misto e le sue componenti sono quindi difficilmente separabili, è necessario effettuare misure "a terra" per poter valutare la dose dovuta a particelle HZE.

Polietilene, Kevlar e Nextel sono stati esposti a ioni Fe di Energia 600 MeV/n e 1 GeV/n presso l'NSRL.





La dose è stata misurata con una camera a ionizzazione prima e dopo ogni spessore dei diversi materiali esposti.



## **DOSIMETRIA "A TERRA"** Risultati

Curve di Bragg in Polietilene, Kevlar, e Nextel di un fascio ioni ferro a NSRL-BNL La riduzione di dose in percentuale è maggiore nel caso del Kevlar che in quello del Nextel, a parità di spessore. Il Polietilene si conferma essere il migliore schermo, ma <u>il Kevlar è un eccellente schermo</u> per la radiazione cosmica





#### **DOSIMETRIA NELLO SPAZIO – Missioni**

Sulla Stazione Spaziale Internazionale (ISS)

ENEIDE: 28 febbario 2005-24 aprile 2005, 56 giorni

SPEDIZIONE 12: 23 dicembre 2005-8 aprile 2006, 106 giorni

SPEDIZIONE 13: 26 aprile 2006- 28 settembre 2006, 154 giorni


SPEDIZIONE 14: 18 settembre 2006- 21 aprile 2007, 213 giorni



#### **ESCHILO**

I rivelatori TLD 100 e CR-39 sono stati posizionati in buste contenenti ciascuna 4 tasche, tre delle quali schermate con uno dei materiali: Kevlar, Polietilene, Nextel, la quarta non schermata.

Spessore schermi: 5 g/cm<sup>2</sup>







**SPAce Dosimetry for Astronauts** 

#### Sulla Stazione Spaziale Internazionale (ISS)

#### ALTCRISS (dalla Spedizione 12 in poi)

I rivelatori TLD 100 e CR-39 sono stati posizionati in due buste interposte tra due blocchi di Polietilene e il rivelatore attivo Sileye-3/Alteino.

Spessore schermi: 5 g/cm<sup>2</sup>

Per ogni spedizione è stato poi previsto un controllo sia in volo che a terra. Quello in volo consiste nell'esposizione di rivelatori non schermati, quello a terra di rivelatori che hanno subito lo stesso trattamento degli altri fino a Baikonur, lasciati in laboratorio per tutta la durata del volo per poi rifare ritorno in Italia con quelli che sono stati esposti nello spazio.





#### **SPAce Dosimetry for Astronauts**

# Su Foton- LIFE Mission/esperimento PARIDE (PARticle and Ion Dosimetry Experiment)

Collaborazione con ASI e Kayser Italia

Obiettivo: effettuare la dosimetria fisica all'interno di Foton e valutare l'efficacia (in termini di riduzione di dose) di schermi di alluminio e Kevlar.

Durata della missione: 12 giorni (lanciato da Baikonur il 14 settembre 2007)

Dosimetri utilizzati: TLD e dosimetri a bolle per la rivelazione dei neutroni (INFN Torino)

L'esperimento PARIDE è stato ospitato all'interno di uno dei 5 contenitori in alluminio (BIOKON), nel BIOKON 1.







#### **SPAce Dosimetry for Astronauts**

#### **DOSIMETRIA NELLO SPAZIO - Materiali**

Sono stati utilizzati dosimetri a termoluminescenza TLD 100 (LiF:Mg,Ti) Vantaggi: sono molto leggeri e poco ingombranti

La termoluminescenza (TL) è quel processo fisico con il quale si ha emissione di luce durante il riscaldamento di un materiale solido (isolante o semiconduttore), che è stato in precedenza esposto a radiazioni.

I materiali a TL assorbono energia dalla radiazione durante l'esposizione e "conservano" questa energia fino a quando non vengono opportunamente riscaldati.

La lettura dei TLD è stata effettuata mediante un lettore manuale Harshaw mod. 3500.



L'intensità della luce emessa è funzione della temperatura e la curva caratteristica è denominata "glow curve".



#### **DOSIMETRIA NELLO SPAZIO – Risultati 1**

Schermo: Polietilene (ALTCRISS)

| Flight Test   | Dose<br>(Polyethylene) | Dose<br>(Space Control) |
|---------------|------------------------|-------------------------|
| EXPEDITION 12 | 0,20                   | 0,22                    |
| EXPEDITION 13 | 0,22                   | 0,26                    |
| EXPEDITION 14 | 0,21                   | 0,23                    |

La dose è espressa in mGy/d

Il Polietilene è un buono schermo



#### **DOSIMETRIA NELLO SPAZIO – Risultati 2**

Schermi: Polietilene, Kevlar e Nextel (ESCHILO)

| Flight Test   | Dose<br>Polyethylene | Dose<br>Kevlar | Dose<br>Nextel | Dose<br>No Shield |
|---------------|----------------------|----------------|----------------|-------------------|
| ENEIDE        | 0,27                 | 0,27           | 0,28           | 0,29              |
| EXPEDITION 12 | 0,23                 | 0,26           | 0,28           | 0,28              |
| EXPEDITION 13 | 0,25                 | 0,25           | 0,26           | 0,29              |
| EXPEDITION 14 | 0,21                 | 0,21           | 0,21           | 0,22              |

#### La dose è espressa in mGy/d

Non c'è una differenza statisticamente significativa tra i valori di dose ottenuti per i TLD schermati con i diversi schermi e quelli non schermati, una piccola differenza la si riscontra nelle spedizioni 12 e 13.



### **DOSIMETRIA NELLO SPAZIO – Risultati 3**

Schermi: Alluminio e Kevlar (LIFE mission on Foton)

I TLD sono stati letti, stiamo analizzando i risultati tenendo conto sia di ulteriori schermi che di una sorgente gamma (0.104 rad/d) all'interno di Foton, e quindi della distanza dei diversi BIOKON da essa.

#### CONCLUSIONI

- ✓Gli esperimenti "a terra" hanno dimostrato che il Kevlar è un eccellente schermo per la radiazione cosmica
- ✓ Gli esperimenti "in volo" hanno confermato che il Polietilene è un ottimo schermo. I dati sull'efficacia degli altri schermi in termini di riduzione di dose devono evidentemente essere integrati con quelli relativi ad altre spedizioni

#### Il lavoro continua...

- ✓ Siamo in attesa dei TLD relativi alla spedizione 15 (ultimata), e alla spedizione 16 (in corso)
- ✓ Stiamo preparando il materiale per la spedizione 17 (TLD 600 e 700), che inizierà in primavera
- ✓ Ci attende l'analisi dei rivelatori CR-39, nonché l'ultimazione dell'analisi dei dati relativi a Foton.